Prediction of RNA Secondary Structure from Random Sequences Using ZEM
ثبت نشده
چکیده
ISSN 2277 – 5048 | © 2012 Bonfring Abstract--The biological role of many RNA crucially depends on their structure. The in depth understanding of the secondary structure of RNA would provide a better insight in to their functionality. Predicting secondary structure of RNA is the most important factor in determining its 3D structure and functions. This work proposes a model for exploring the features of a number of RNA sequences simultaneously so that comparison of sequences can be made and relevant sequences can be identified. The proposed model accepts RNA sequences in any valid biological file format. For each given sequence, required numbers of random sequences are generated. The generated sequences should have the same base composition as that of original sequence. ZEM (Zuker’s Energy Minimization) Algorithm finds the biologically correct structure of each RNA sequence and its corresponding free energy value. The proposed prototype enables to experiment with a number of RNA sequences and to study their features so that biologically relevant inferences can be made. An important area where it finds application is in the design of pharmaceutical products.
منابع مشابه
Relation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملPreRkTAG: Prediction of RNA Knotted Structures Using Tree Adjoining Grammars
Background: RNA molecules play many important regulatory, catalytic and structural <span style="font-variant: normal; font-style: norma...
متن کاملRNA secondary structure prediction using conditional random fields model
Non-coding RNAs (ncRNAs) have important biological functions in living cells dependent on their conserved secondary structures. Here, we focus on computational RNA secondary structure prediction by exploring primary sequences and complementary base pair interactions using the Conditional Random Fields (CRFs) model, which treats RNA prediction as a sequence labelling problem. Proposing suitable ...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملFast Algorithms for RNA Secondary Structure Prediction
RNA secondary structure prediction with pseudoknots is important, since pseudoknots are part of functionally improtant RNAs in cells. State of the art dynamic programming algorithms due to Akutsu et al [7] and Deogun et al [8] perform well on single RNA sequences. Our aim of this project is to be able to predict secondary structure of real life RNA sequences, which can be more than 700 nucleoti...
متن کامل